

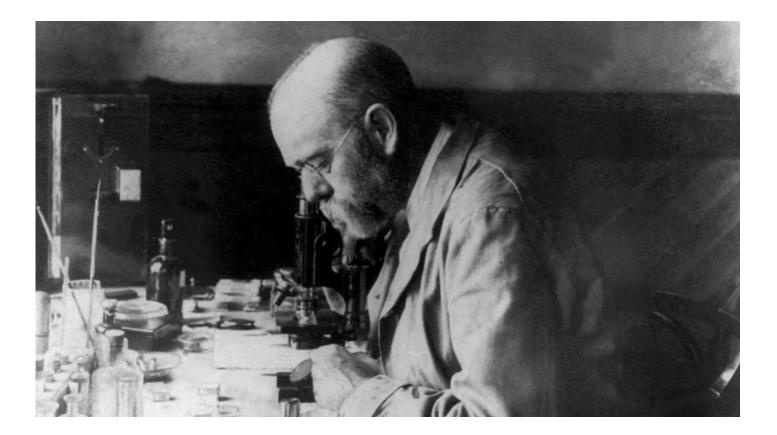
Combination Therapy: A Historical Perspective

Checkmate 214 – Ipilimumab + Nivolumab for Advanced RCC

André P. Fay, MD, PhD

Professor of Medicine - PUCRS School of Medicine Chief, Medical Oncology Department – HSL/PUCRS Visiting Scientist at Dana-Farber/Harvard Medical School

March, 1st, 2018


Disclosure

- Honoraria: Pfizer, BMS, Novartis, Roche, AstraZeneca, MSD
- Scientific Advisory Board: Janssen, Novartis, Roche, Pfizer
- Research Grant: CAPES CNPq, BMS, AstraZeneca, MSD, Roche, Pfizer

Why to combine therapies?

- To enhance efficacy
- To target key pathways in a characteristically synergistic or an additive manner
- To reduce drug resistance
- Combination Chemotherapy Medicine's Attempt to Beat Darwin

Tuberculosis: a classic example

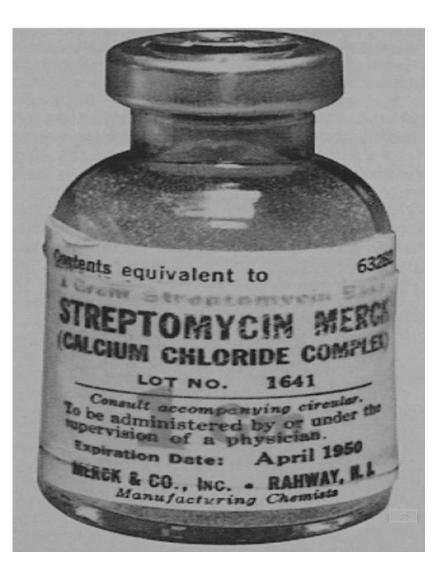

Repouso

Luz

Alimentação

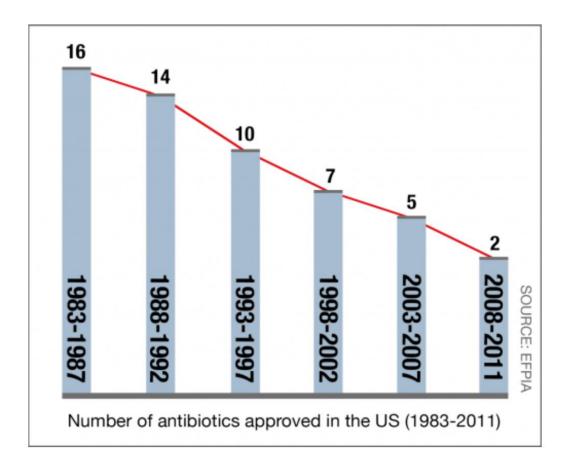
Ar seco dos climas altos

Francisque Crotte treating a patient with TB using electricity



"Le Petit Journal", Paris, 1901

Theodore Tuffier: Surgical treatment for TB


Improving the effectiveness of the treatment of tuberculosis

- 1952: Isoniazid, Pyrazinamide
- 1970: Rifampicin
- 2010: Ethambutol

The main reason for the improved effectiveness of combination therapy is prevention of the emergence of resistance to individual drugs

The emergence of resistance to multiple antimicrobial agents in pathogenic bacteria has become a significant global public health threat

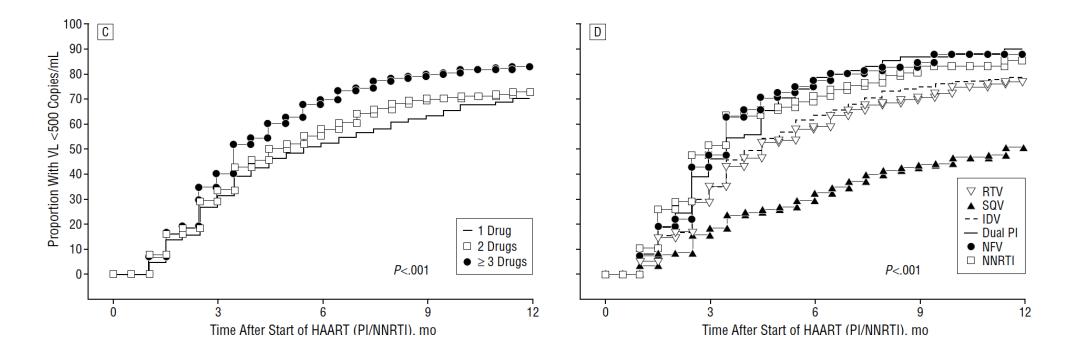
Special Communication

Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults 2016 Recommendations of the International Antiviral Society-USA Panel

Huldrych F. Günthard, MD; Michael S. Saag, MD; Constance A. Benson, MD; Carlos del Rio, MD; Joseph J. Eron, MD; Joel E. Gallant, MD, MPH; Jennifer F. Hoy, MBBS, FRACP; Michael J. Mugavero, MD, MHSc; Paul E. Sax, MD; Melanie A. Thompson, MD; Rajesh T. Gandhi, MD; Raphael J. Landovitz, MD; Davey M. Smith, MD; Donna M. Jacobsen, BS; Paul A. Volberding, MD

Table 3. Recommended Initial Antiretroviral Therapy Regimens^a

Regimen	Rating
Dolutegravir/abacavir/lamivudine	Ala
Dolutegravir plus tenofovir alafenamide/emtricitabine ^b	Ala
Elvitegravir/cobicistat/tenofovir alafenamide/emtricitabine ^b	Ala
Raltegravir plus tenofovir alafenamide/emtricitabine ^b	AIII

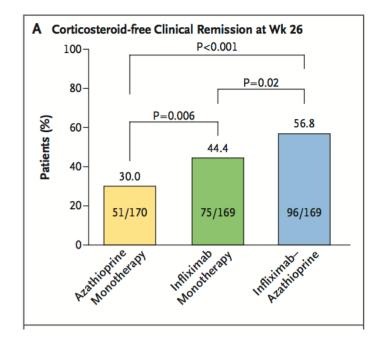

The life cycle of HIV (6 steps):

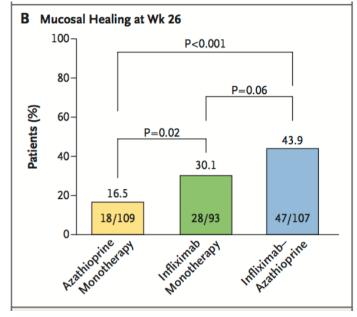
- (1) entry (binding and fusion)
- (2) reverse transcription
- (3) Integration
- (4) replication (transcription and translation)
- (5) Assembly
- (6) budding and maturation.

Predictors of Virological Success and Ensuing Failure in HIV-Positive Patients Starting Highly Active Antiretroviral Therapy in Europe

Results From the EuroSIDA Study

Roger Paredes, MD; Amanda Mocroft, PhD; Ole Kirk, MD; Adriano Lazzarin, MD; Simon E. Barton, MD; Jan van Lunzen, MD; Terese L. Katzenstein, PhD; Francisco Antunes, PhD; Jens D. Lundgren, MD, DMSc; Bonaventura Clotet, PhD; for the EuroSIDA Study Group




Arch Intern Med. 2000;160(8):1123-1132

ORIGINAL ARTICLE

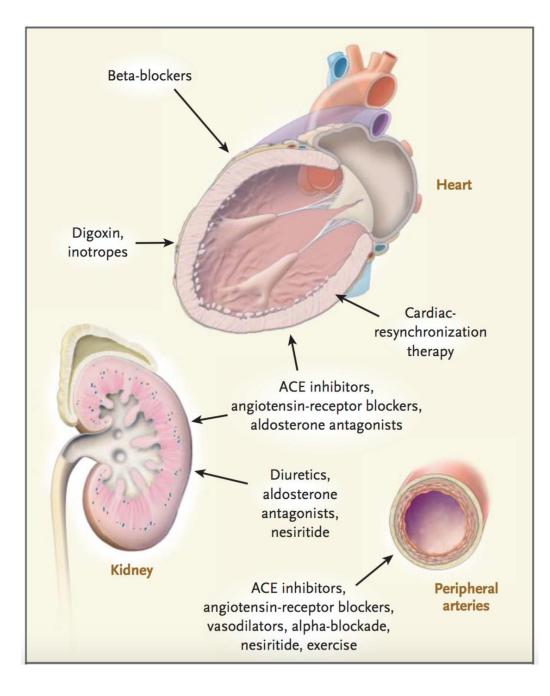
Infliximab, Azathioprine, or Combination Therapy for Crohn's Disease

Jean Frédéric Colombel, M.D., William J. Sandborn, M.D., Walter Reinisch, M.D., Gerassimos J. Mantzaris, M.D., Ph.D., Asher Kornbluth, M.D.,
Daniel Rachmilewitz, M.D., Simon Lichtiger, M.D., Geert D'Haens, M.D., Ph.D., Robert H. Diamond, M.D., Delma L. Broussard, M.D., Kezhen L. Tang, Ph.D., C. Janneke van der Woude, M.D., Ph.D., and Paul Rutgeerts, M.D., Ph.D., for the SONIC Study Group*

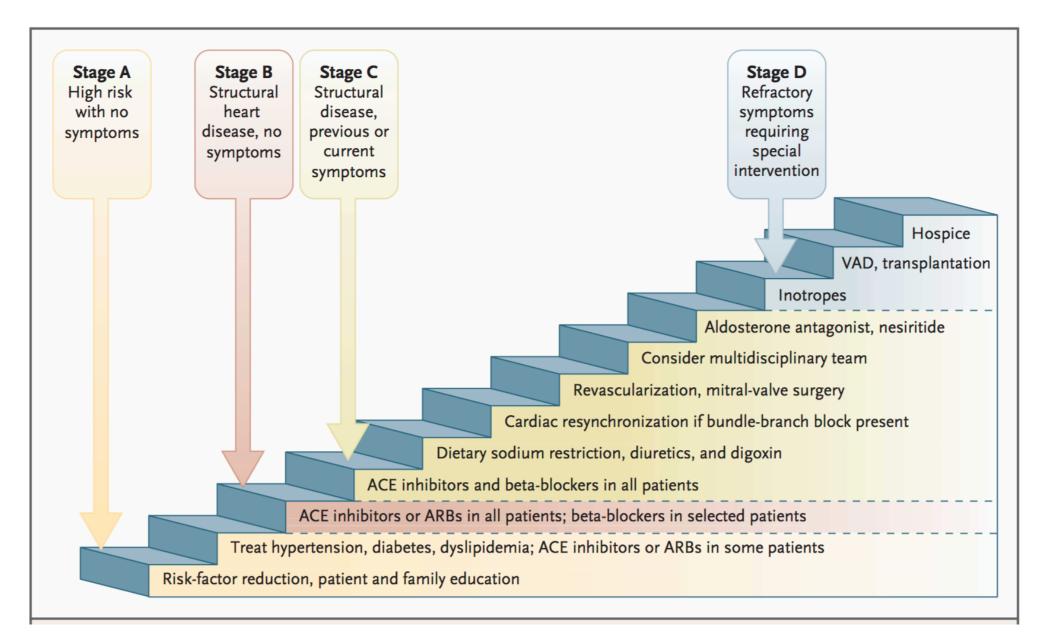
Combination Therapy Versus Monotherapy in Reducing Blood Pressure: Meta-analysis on 11,000 Participants from 42 Trials

David S. Wald, MD, Malcolm Law, FRCP, Joan K. Morris, PhD, Jonathan P. Bestwick, MSc, Nicholas J. Wald, FRS Wolfson Institute of Preventive Medicine at Barts and The London Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London, United Kingdom.

CLINICAL SIGNIFICANCE


- Monotherapy is the standard initial treatment for reducing blood pressure, with stepwise increases in dose if the desired decrease in blood pressure is not achieved.
- Combining drugs from different classes is approximately 5 times more effective in lowering blood pressure than increasing the dose of 1 drug.
- Combination therapy is the preferred initial strategy in the treatment of high blood pressure.

The NEW ENGLAND JOURNAL of MEDICINE


REVIEW ARTICLE

MEDICAL PROGRESS Heart Failure

Mariell Jessup, M.D., and Susan Brozena, M.D.

N Engl J Med 2003;348:2007-18

But this is only the beginning!

Treatment of cancer may represent the field where combination strategies surely play a crucial role

The Effectiveness of Combinations of Antileukemic Agents in Inducing and Maintaining Remission in Children with Acute Leukemia

By Emil Frei, III,^{1a} Myron Karon,¹ Robert H. Levin,¹⁰ Emil J. Freireich,^{1a} Robert J. Taylor,¹ Juliet Hananian,² Oleg Selawry,² James F. Holland,² Barth Hoogstraten,³ Irving J. Wolman,⁴ Esshagh Abir,⁴ Arthur Sawitsky,⁵ Stanley Lee,⁵ Stephan D. Mills,⁶ E. Omer Burgert, Jr.,⁶ Charles L. Spurr,⁷ Richard B. Patterson,⁷ Franklin G. Ebaugh,⁸ G. Watson James, III, and John H. Moon⁹

THE BROAD objective of the present study was to determine whether combinations of chemotherapeutic agents could improve the frequency and duration of complete remission in children with acute lymphocytic leukemia. The complete remission induction rate for the more effective remisVOLUME 32 · NUMBER 28 · OCTOBER 1 2014

JOURNAL OF CLINICAL ONCOLOGY

ASCO 50TH ANNIVERSARY

Testicular Cancer: A Reflection on 50 Years of Discovery

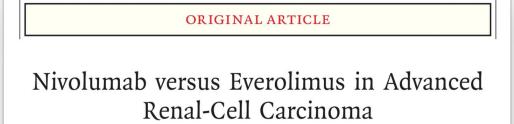
Nasser Hanna and Lawrence H. Einhorn, Indiana University School of Medicine, Indianapolis, IN

Testicular Cancer: cure in ~ 95% of all patients

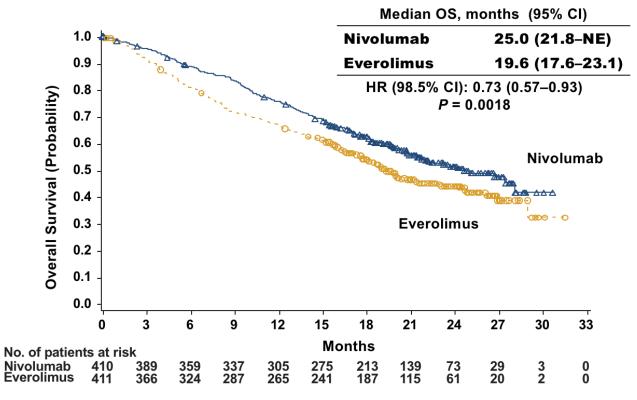
Year	Event	Significance	Ref
1937	hCG first reported in the urine of patients with testicular cancer	Improved ability to diagnose, stage, assess response, detect relapse, estimate prognosis	3
1940s	Seminomas are radiation-sensitive	95% cure rate for stage I or II seminoma prior to era of cisplatin-based chemotherapy	6
1960	Actinomycin-D based chemotherapy tested in advanced testicular cancer	Durable complete responses and some cures reported for the first time in patients with metastatic testicular cancer	40
1965	Discovery of cisplatin	Revolutionized the treatment of testicular cancer, achieving cures in > 80% of patients with metastatic disease	47
1974	PVB regimen first tested	Increased cure rate by 1 log compared with contemporaneous chemotherapy	50

1980s	Nerve-sparing RPLND	Preserves ejaculatory function in > 90% of patients undergoing this procedure	18-24
1981	PVB with or without maintenance vinblastine	Eliminated need for maintenance therapy	53
1985	EP regimen	Cures possible in the second-line setting	57
1987	PVB versus BEP	BEP supplants PVB as standard therapy	61
1989	$\begin{array}{l} BEP\times 3 \text{ versus 4 cycles} \\ \text{in good risk} \end{array}$	Eliminates fourth cycle of BEP in good risk patients	63
1997	IGCCC prognostic groups	Allows for more accurate study of treatment outcomes by risk groups	66
2007	Largest series to date reported on HDCT in relapsed disease	Cures achieved in > third- line, poor-risk groups, including platinum- refractory patients	89

cisplatin; hCG, human chorionic gonadotropin; HDCT, high-dose chemotherapy; IGCCC, International Germ Cell Cancer Collaborative Group; PVB, cisplatin, vinblastine, and bleomycin; RPLND, retroperitoneal lymph-node dissection.


Clear Cell RCC: VHL Gene Mutation

Nature Reviews | Nephrology



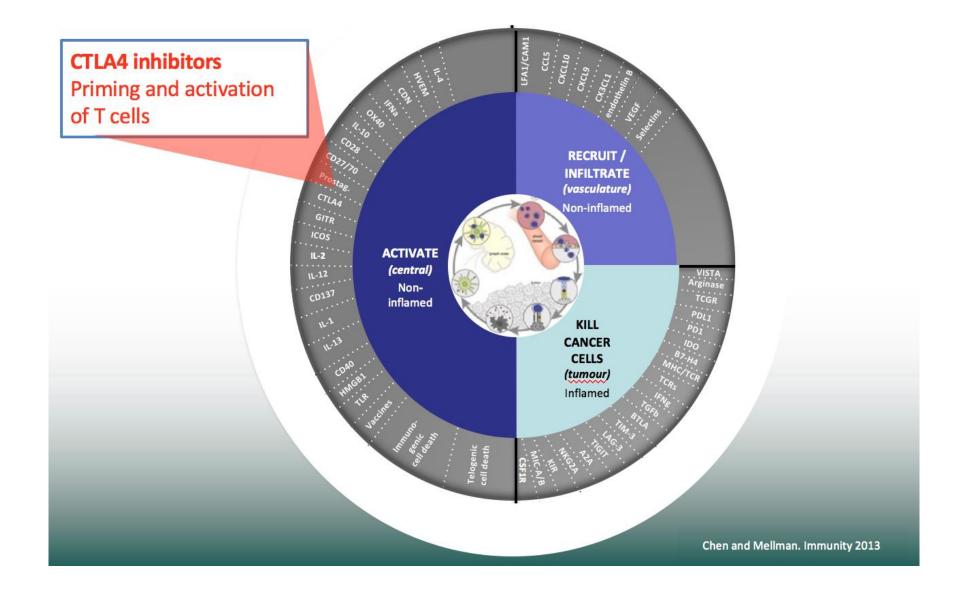
The NEW ENGLAND JOURNAL of MEDICINE


R.J. Motzer, B. Escudier, D.F. McDermott, S. George, H.J. Hammers, S. Srinivas,
S.S. Tykodi, J.A. Sosman, G. Procopio, E.R. Plimack, D. Castellano, T.K. Choueiri,
H. Gurney, F. Donskov, P. Bono, J. Wagstaff, T.C. Gauler, T. Ueda, Y. Tomita,
F.A. Schutz, C. Kollmannsberger, J. Larkin, A. Ravaud, J.S. Simon, L.-A. Xu,
I.M. Waxman, and P. Sharma, for the CheckMate 025 Investigators*

Overall survival

Minimum follow-up was 14 months. NE. not estimable.

Ways to keeping the T-Cells "Active"



Blocking the Inhibiting

Turning up The Activating

Mellmann et al. Nature, 2011

How can we further enhance responses?

Nivolumab + Ipilimumab phase I (Checkmate 16)

		N3l1 (n=47)		N1I3 (n=47)		
Response		ORR: 40%				Treatment- Naïve (n=21)
Confirmed ORR, % 95% Cl		 Ongoing responses: 42% 				42.9 21.8–66.0
BOR, %	— I	 Median PFS: 7.7 months 				
Complete respo Partial response Stable disease		2-year OS rate: 67%				0 42.9 28.6
Disease progres	Disease progression 27.3 8.0 11.5			23.8		
Unable to detern	nine	0 4.0 7.7				4.8

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18

Hammers HJ et al. J Clin Oncol 2017.

Slides are the property of the author. Permission required for reuse.

CheckMate 214: Efficacy and Safety of Nivolumab Plus Ipilimumab vs Sunitinib for Treatment-Naïve Advanced or Metastatic Renal Cell Carcinoma, Including IMDC Risk and PD-L1 Expression Subgroups

 Bernard Escudier,¹ Nizar M. Tannir,² David F. McDermott,³ Osvaldo Arén Frontera,⁴ Bohuslav Melichar,⁵ Elizabeth R. Plimack,⁶ Philippe Barthelemy,⁷ Saby George,⁸ Victoria Neiman,⁹ Camillo Porta,¹⁰
 Toni K. Choueiri,¹¹ Thomas Powles,¹² Frede Donskov,¹³ Pamela Salman,¹⁴ Christian K. Kollmannsberger,¹⁵ Brian Rini,¹⁶ Sabeen Mekan,¹⁷ M. Brent McHenry,¹⁷ Hans J. Hammers,¹⁸ Robert J. Motzer¹⁹

CheckMate 214: Study design

Treatment **Patients** Arm A 3 mg/kg nivolumab IV + Treatment-naïve Randomize 1:1 advanced or 1 mg/kg ipilimumab IV Q3W metastatic clear-cell for four doses, then **Treatment until** Stratified by RCC 3 mg/kg nivolumab IV Q2W progression or IMDC prognostic score А Measurable disease (0 vs 1–2 vs 3–6) unacceptable • KPS ≥70% Region (US vs toxicity Tumor tissue Canada/Europe vs Arm B Rest of World) available for PD-L1 50 mg sunitinib orally once testing daily for 4 weeks (6-week cycles)

Co-primary endpoints

• In IMDC intermediate- and poor-risk patients

- ORR (per independent radiology review committee, IRRC)
- PFS (per IRRC)
- OS
- Statistical analyses
 - Overall alpha is 0.05, split among the three co-primary endpoints
 - 0.001 for ORR, 0.009 for PFS, and 0.04 for OS
 - PFS analysis had 80% power and OS analysis had 90% power to detect a statistically significant difference between treatment arms

Secondary and exploratory endpoints

- Secondary endpoints (in intention-to-treat [ITT] patients)
 - ORR
 - PFS
 - OS
 - Adverse event incidence rate (in all treated patients)
- Secondary efficacy endpoints were subject to hierarchical testing, first testing in intermediate/poor-risk patients followed by testing in ITT patients, if significant
- Exploratory endpoints
 - ORR, PFS, and OS in favorable-risk patients
 - Outcomes by tumor PD-L1 expression level
 - Health-related quality of life based on NCCN Functional Assessment of Cancer Therapy-Kidney Symptom Index (FKSI-19)

Baseline characteristics

	IMDC intermediate/poor risk		Intention to treat	
Characteristic	NIVO + IPI N = 425	SUN N = 422	NIVO + IPI N = 550	SUN N = 546
Median age, years	62	61	61	61
Male, %	74	71	75	72
IMDC prognostic score (IVRS), % Favorable (0) Intermediate (1–2) Poor (3–6)	0 79 21	0 79 21	22 59 19	20 62 18
Region (IVRS), % USA Canada/Europe Rest of the world	26 35 39	26 35 39	28 37 35	28 36 36
Quantifiable tumor PD-L1 expression, % <1% ≥1%	n = 384 74 26	n = 392 71 29	n = 499 77 23	n = 503 75 25

Escudier B. ESMO 2017

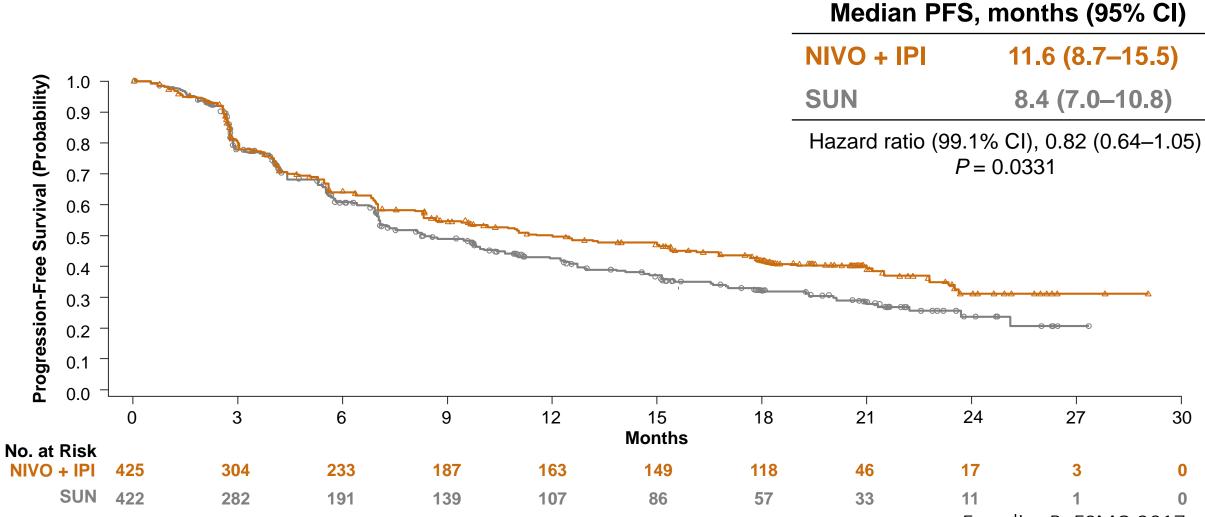
Baseline characteristics in favorable-risk patients were similar, except tumor PD-L1 expression was lower than the intermediate/poor-risk patients and ITT population

Baseline disease characteristics

	IMDC interme	diate/poor risk	Intention to treat		
Characteristic	NIVO + IPI N = 425	SUN N = 422	NIVO + IPI N = 550	SUN N = 546	
No. of sites with ≥1 target/non-target lesion					
1	21	20	22	22	
≥2	79	80	78	78	
Site of metastasis, %					
Lung	69	70	69	68	
Lymph node	45	51	45	49	
Liver	31	21	18	20	
Bone	20	21	18	19	

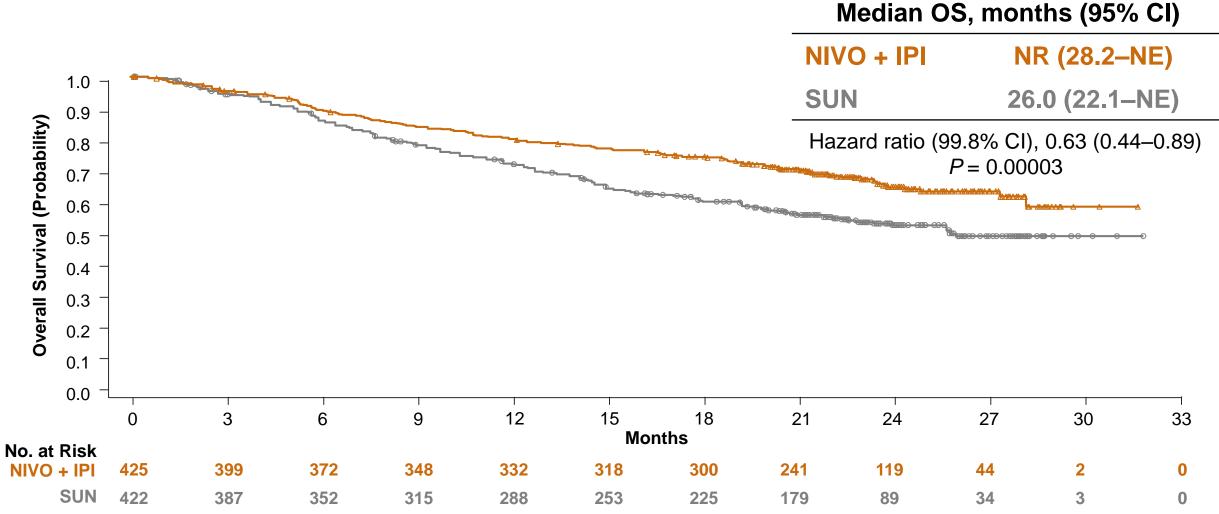
Co-primary endpoint ORR: IMDC intermediate/poor risk

	N = 847			
Outcome	NIVO + IPI N = 425	SUN N = 422		
Confirmed ORR, ^a % (95% CI)	42 (37–47)	27 (22–31)		
	<i>P</i> < 0.0001			
Confirmed BOR, ^a %				
Complete response	9 ^b	1 ^b		
Partial response	32	25		
Stable disease	31	45		
Progressive disease	20	17		
Unable to determine/not reported	8	12		
Duration of response, median	Not reached	18.2		
(95% CI), months	(21.8–NE)	(14.8–NE)		
Patients with ongoing response, %	72	63		


SS • Median follow-up was 25.2 months

^aIRRC-assessed ORR and BOR by RECIST v1.1; ^bP < 0.0001

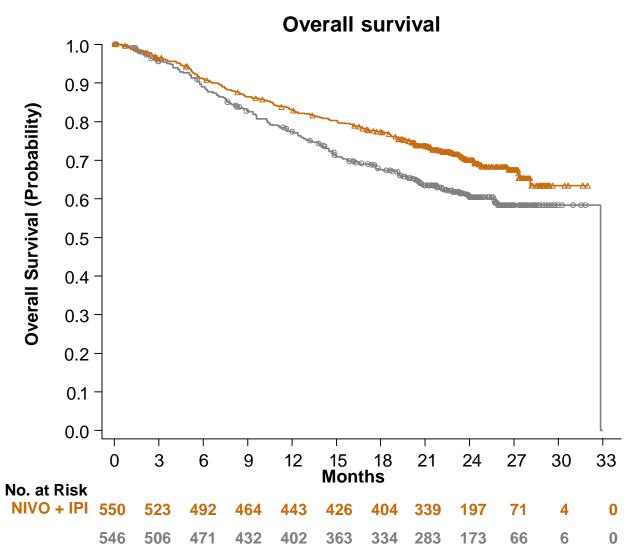
Escudier B. ESMO 2017



Co-primary endpoint PFS per IRRC: IMDC intermediate/poor risk

Escudier B. ESMO 2017

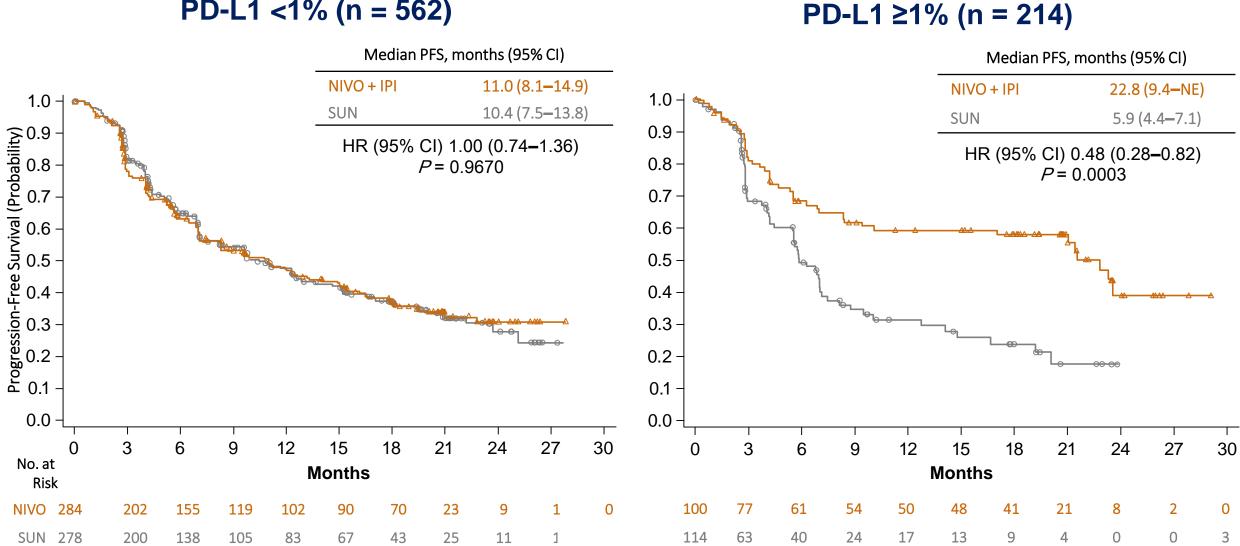
Co-primary endpoint OS: IMDC intermediate/poor risk


Escudier B. ESMO 2017

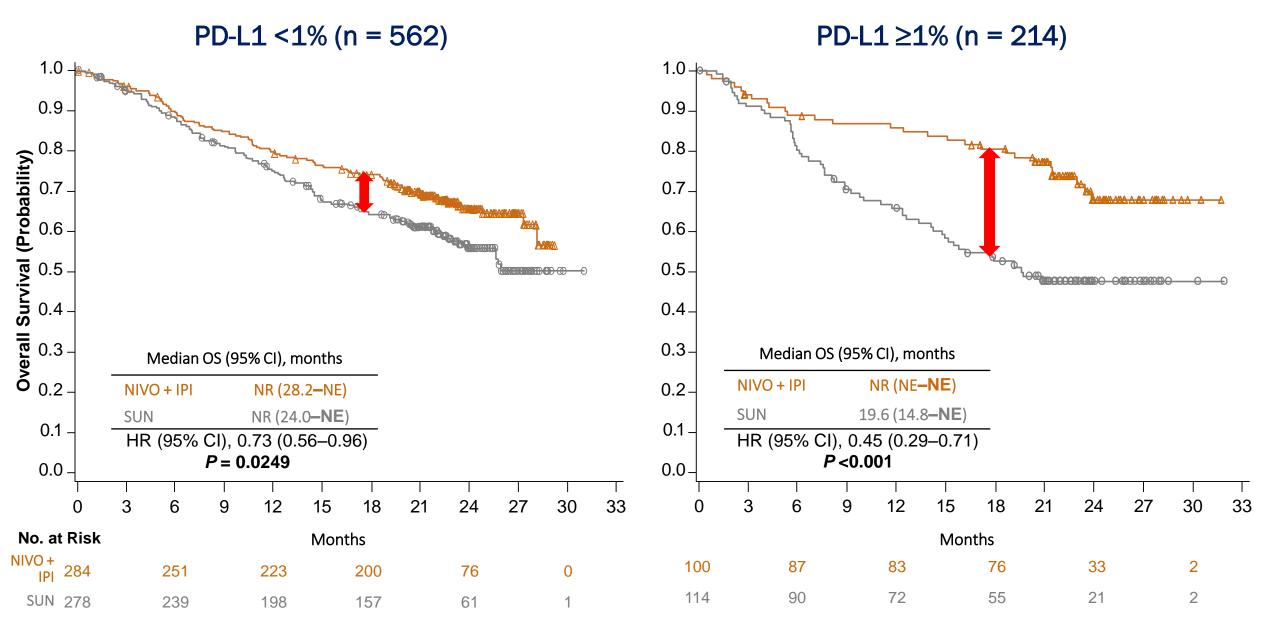
Secondary endpoint ORR, PFS, and OS: Intention to treat

	N = 1,096ª			
Outcome	NIVO + IPI N = 550	SUN N = 546		
Confirmed ORR, ^b % (95% Cl)	39 (35–43) 32 (28–36)			
	<i>P</i> = 0.0191			
PFS, ^c median (95% Cl),	12.4 (9.9–16.5) 12.3 (9.8–			
months	HR (99.1% CI) 0.98 (0.79–1.23) P = 0.8498			
OS, median (95% CI),	NR (NE–NE)	32.9 (NE–NE)		
months	HR (99.8% CI) 0.68 (0.49–0.95) P = 0.00028			

 ^a23% of patients in the NIVO + IPI arm and 25% of patients in the SUN arm had tumor PD-L1 expression ≥1%
 ^bIRRC-assessed by RECIST v1.1
 ^cIRRC-assessed


Exploratory endpoint ORR and PFS: IMDC favorable risk

	N = 249 ^a		
	NIVO + IPI	SUN	
Outcome	N = 125	N = 124	
Confirmed ORR, ^b % (95% CI)	29 (21–38)	52 (43–61)	
	P = 0.0002		
PFS, ^c median (95% CI), months	15.3 (9.7–20.3)	25.1 (20.9–NE)	
	HR (99.1% CI) 2	.18 (1.29–3.68)	
	<i>P</i> < 0.0001		


Exploratory endpoint PFS by PD-L1 expression: IMDC intermediate/poor risk

PD-L1 <1% (n = 562)

OS by tumor PD-L1 expression:

IMDC intermediate/poor risk

Efficacy by baseline PD-L1 expression: IMDC intermediate/poor risk

Subgroup	NIVO + IPI No. of patients	SUN No. of patients	ORR difference (95% CI)	<i>P</i> value
ORR Baseline PD-L1 expression ≥1% <1%	100 284	114 278	-50 0 50 Favors SUN Favors NIVO + IPI	< 0.0001 0.0252
			Hazard ratio (95% CI)	
PFS Baseline PD-L1 expression ≥1% <1% Not reported	100 284 41	114 278 30		0.0003 0.9670 NA
OS Baseline PD-L1 expression ≥1% <1% Not reported	100 284 41	114 278 30		<0.001 0.0249 NA

Favors NIVO + IPI

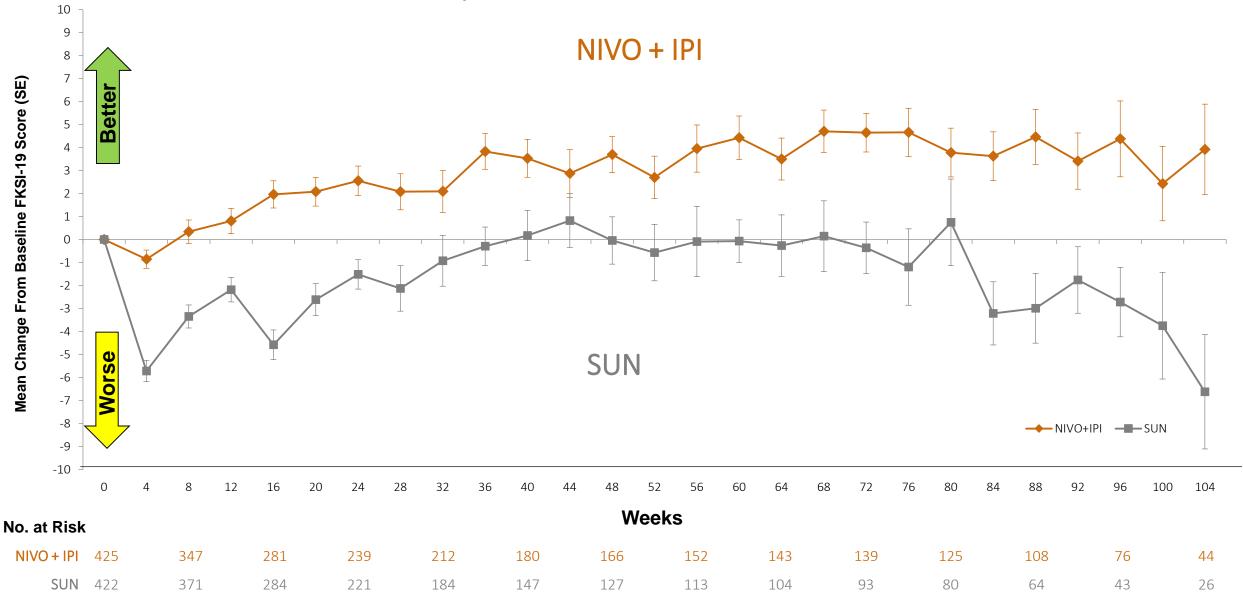
Favors SUN

Treatment-related adverse events: All treated patients

) + IPI 547	SUN N = 535	
Event, %	Any grade	Grade 3–5	Any grade	Grade 3–5 ^a
Treatment-related adverse events in ≥25% of patients	93	46	97	63
Fatigue	37	4	49	9
Pruritus	28	<1	9	0
Diarrhea	27	4	52	5
Nausea	20	2	38	1
Hypothyroidism	16	<1	25	<1
Decreased appetite	14	1	25	1
Dysgeusia	6	0	33	<1
Stomatitis	4	0	28	3
Hypertension	2	<1	40	16
Mucosal inflammation	2	0	28	3
Palmar-plantar erythrodysesthesia syndrome	1	0	43	9
Treatment-related AEs leading to discontinuation, %	22	15	12	7
Treatment-related deaths	n =	= 7 ^b	n =	= 4 ^c

^aTwo patients had grade 5 cardiac arrest. ^bPneumonitis, immune mediated bronchitis, lower GI hemorrhage, hemophagocytic syndrome, sudden death, liver toxicity, lung infection. ^cCardiac arrest (n = 2), heart failure, multiple organ failure

Immune-mediated adverse events: All treated patients


	NIVO + IPI N = 547		
Category, %	Any grade	Grade 3–4	
Rash	17	3	
Diarrhea/colitis	10	5	
Hepatitis	7	6	
Nephritis and renal dysfunction	5	2	
Pneumonitis	4	2	
Hypersensitivity/infusion reaction	1	0	
Hypothyroidism	19	<1	
Hyperthyroidism	12	<1	
Adrenal insufficiency	8	3	
Hypophysitis	5	3	
Thyroiditis	3	<1	
Diabetes mellitus	3	1	

• 60% of patients treated with NIVO + IPI required systemic corticosteroids for an adverse event

• Secondary immunosuppression with infliximab (3%) and mycophenolic acid (1%) was reported

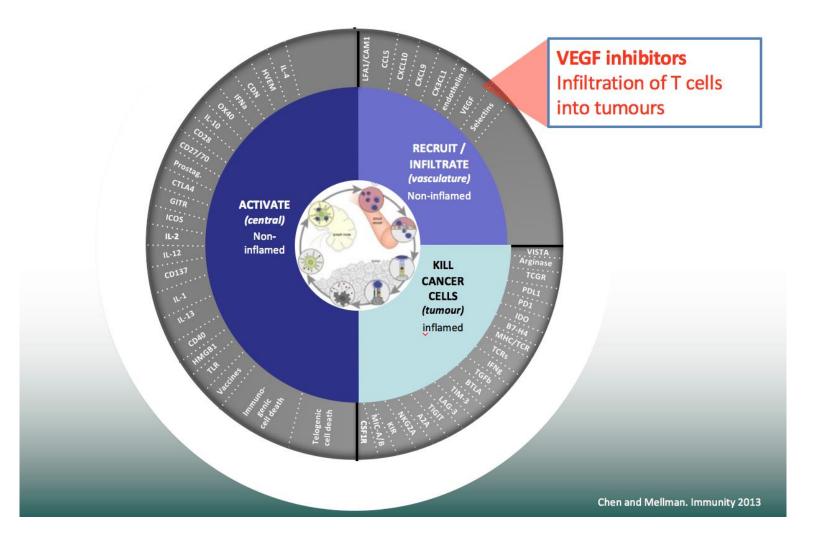
Patient-reported kidney cancer symptom index: IMDC intermediate/poor risk

Summary and conclusions

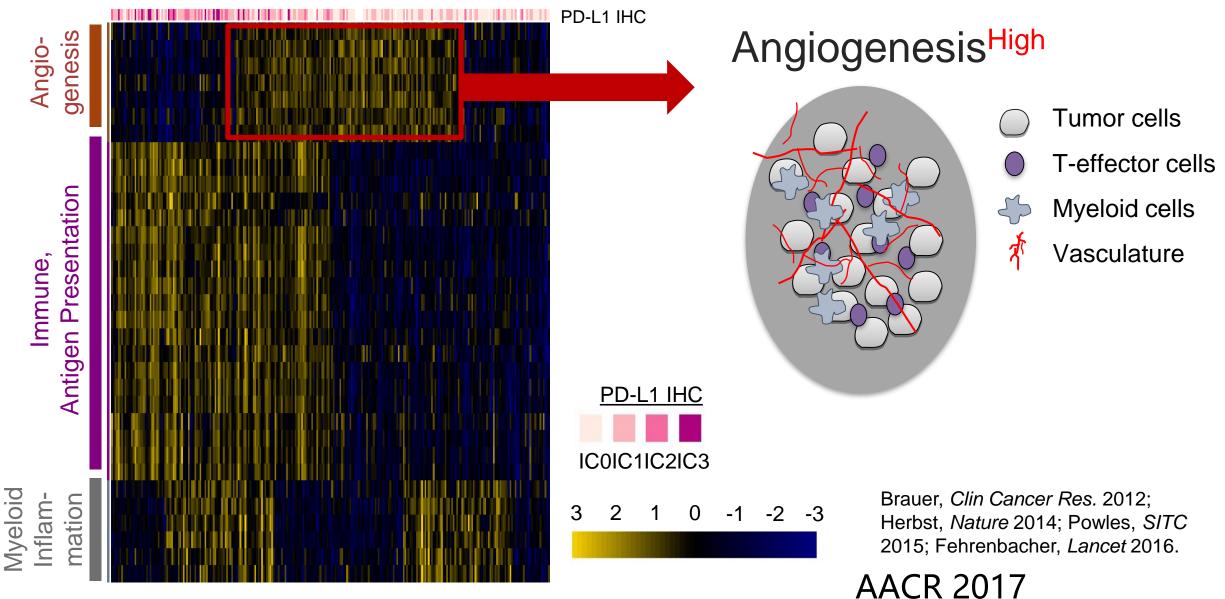
- In IMDC intermediate/poor risk treatment-naïve aRCC, CheckMate 214 demonstrated
 - Significantly improved ORR with NIVO + IPI versus SUN
 - 9.4% complete response rate
 - Durable responses, with median duration of response not reached
 - Median PFS improvement of >3 months with NIVO + IPI versus SUN
 - Significant OS benefit with NIVO + IPI versus SUN
 - Median OS: not reached (NIVO + IPI) and 26.0 months (SUN); HR 0.63; P = 0.00003
- Exploratory analysis of patients with tumor PD-L1 ≥1% demonstrated a higher ORR and improved PFS with NIVO + IPI versus SUN

Summary and conclusions

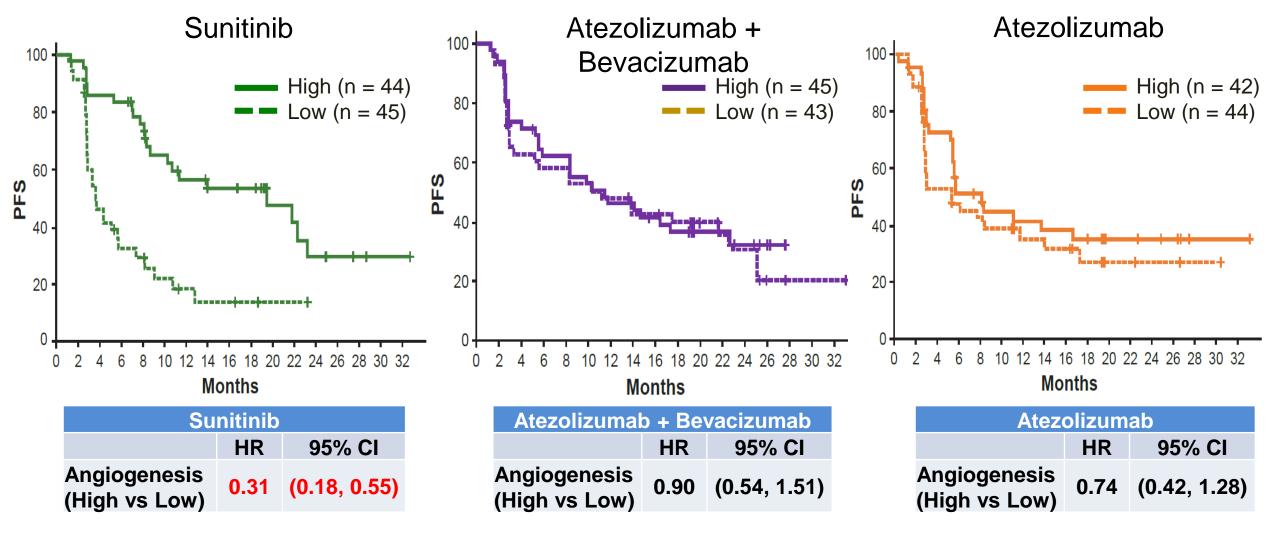
- The safety profile of NIVO + IPI was manageable and consistent with previous studies
 - More high-grade treatment-related adverse events were observed with SUN, although more patients had treatment-related adverse events leading to treatment discontinuation with NIVO + IPI
 - Patients in the NIVO + IPI arm experienced greater symptomatic improvement versus SUN
 - Throughout the course of the study, patients in the NIVO +IPI arm reported better symptom control relative to those in the SUN arm
- These results suggest that NIVO + IPI is a potential first-line treatment option for patients with aRCC, with intermediate or poor IMDC risk, especially in those with PD-L1 expression ≥1%


Toxicity may represent one limitation...

Fulminant type 1 diabetes caused by dual immune checkpoint blockade in metastatic renal cell carcinoma 🚥

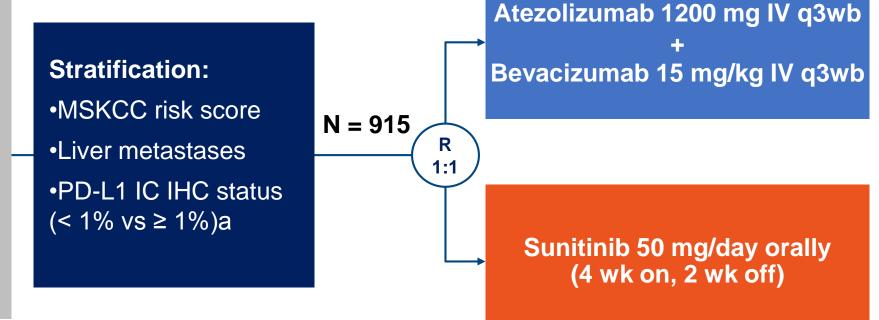

G. H. Teló, G. F. Carvalhal, C. G. S. Cauduro, V. S. Webber, C. H. Barrios, A. P. Fay ⊠

Annals of Oncology, Volume 28, Issue 1, 1 January 2017, Pages 191–192, https://doi.org/10.1093/annonc/mdw447 **Published:** 18 October 2016


How can we further enhance responses?

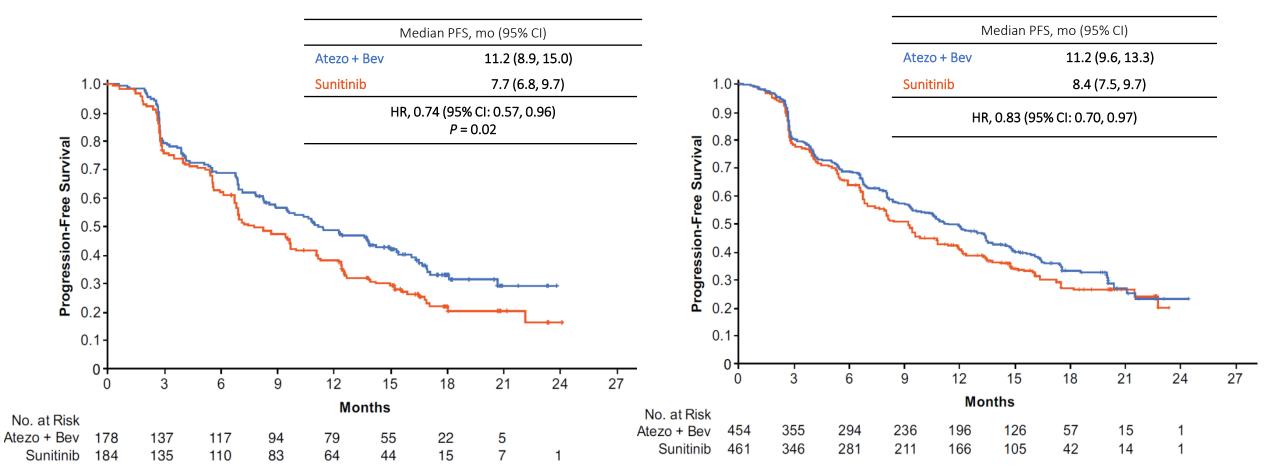
Transcriptome Map of Angiogenesis and Immune-Associated Genes in RCC Tumors

Sunitinib Demonstrated Improved PFS in Angiogenesis^{High} Subset vs Angiogenesis^{Low} Subset


- Angiogenesis gene signature: VEGFA, KDR, ESM1, PECAM1, ANGPTL4, CD34.
- Angiogenesis High: ≥ median expression, Angiogenesis Low: < median expression.

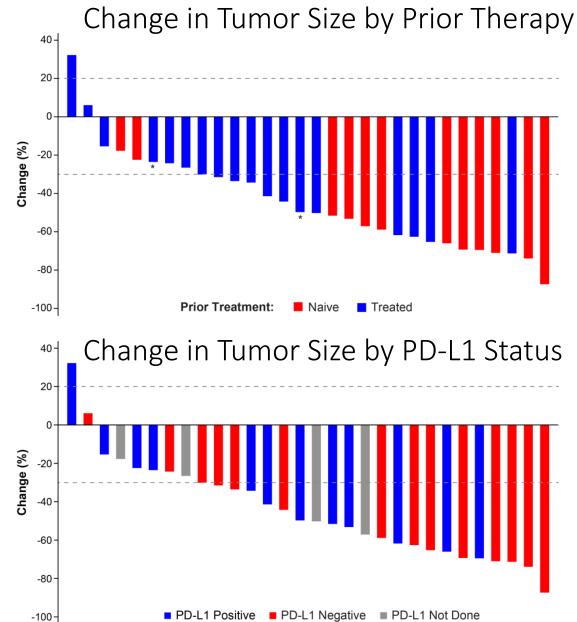
AACR 2017

Study Design

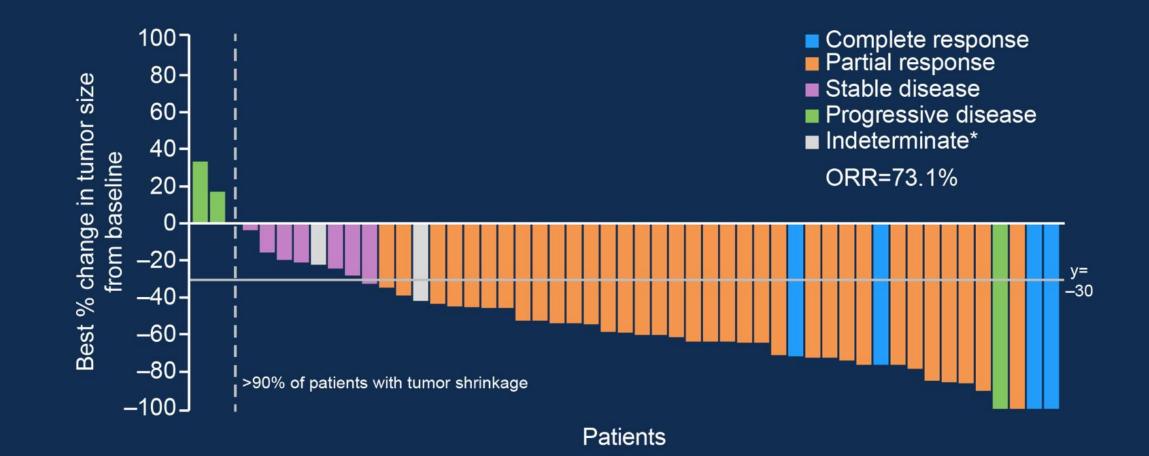

Key Eligibility:

- Treatment-naive advanced
 or metastatic RCC
- Clear cell and/or sarcomatoid histology
- KPS ≥ 70
- Tumor tissue available for PD-L1 staining

 $a \ge 1\%$ IC: 40% prevalence using SP142 IHC assay; b No dose reduction for atezolizumab or bevacizumab.


PFS (PD-L1+ & ITT)

PFS assessed by investigators. Minimum follow-up, 12 mo. Median follow-up, 15 mo.

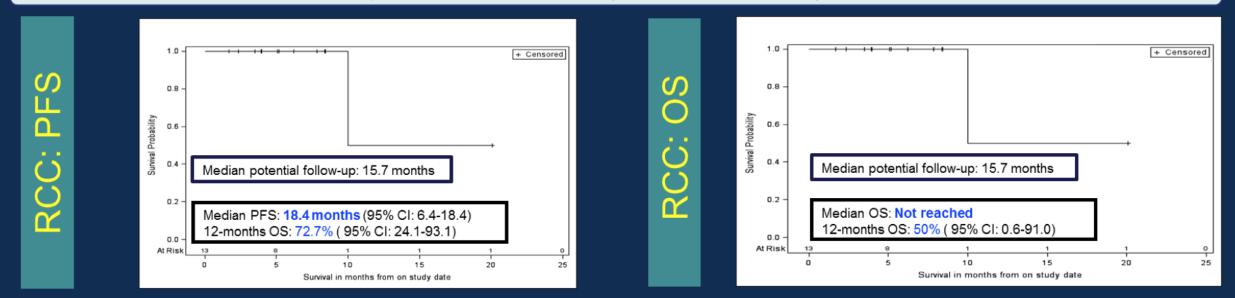

TKI/IO Combinations: Lenvatinib + Pembrolizumab

Parameter	Total (n = 30)	Treatment Naïve (n = 12)	Previous Treatments (n=18)
ORR _(Week 24) , n (%) 95% Cl	19 (63) 44–80	10 (83) 52–98	9 (50) 26–74
ORR, n (%) 95% Cl	19 (63) 44–80	10 (83) 52–98	9 (50) 26–74
BOR, n (%)			
Partial response	19 (63)	10 (83)	9 (50)
Stable disease	10 (33)	2 (17)	8 (44)
Progression	1 (3)	0	1 (6)

ESMO 2017.

Axitinib + Pembrolizumab

* Stable disease or partial response not confirmed, or no follow-up scans available. ORR=objective response rate

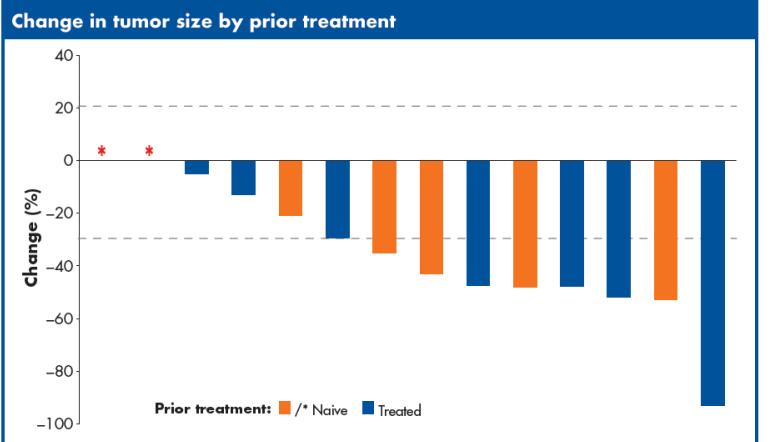

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18

Slides are the property of the author. Permission required for reuse.

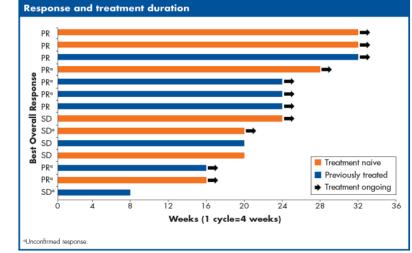
Cabozantinib/Nivolumab +/- Ipilimumab

n (%)	Median F/U months	ORR	PR	CR	SD	PR+CR+SD
RCC N=13	5.2	53.9% (7/13) (95% CI: 25.1-80.8%)	53.9% (7 /13) (95% CI: 25.1-80.8%)	0	46.1% (6/13) (95% CI: 19.2-74.9%)	100% (13/13) (95% CI: 75.3-100.0%)

RCC: Median Duration of Response: 18.4 months (95% CI: 6.4-18.4)

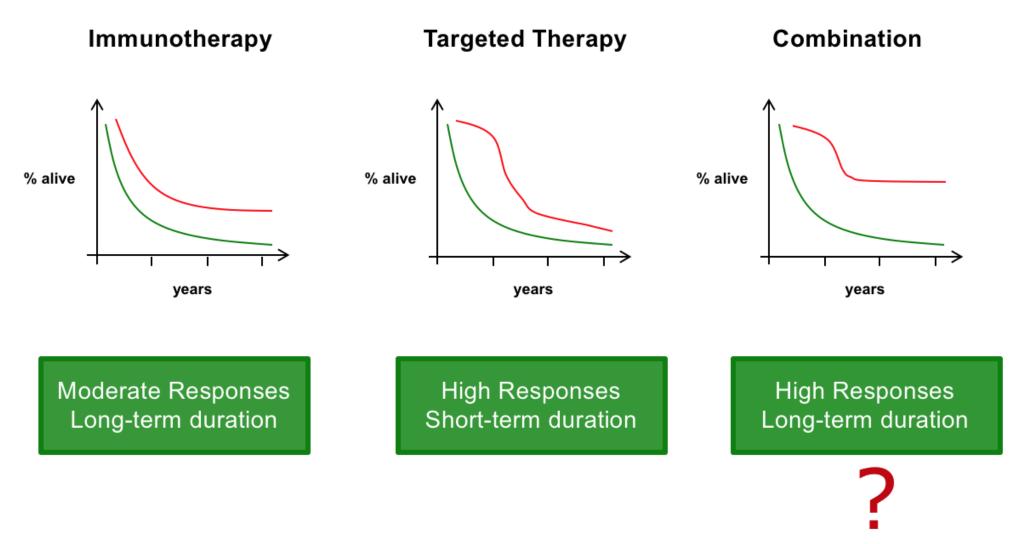


PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18


Slides are the property of the author. Permission required for reuse.

Presented by: Dr. Rosa Nadal (PI: Dr. Andrea Apolo)

Tivozanib + Nivolumab



Best overall response, n (%)	Patients (n=14)
CR	0
PR	9 (64.3)°
SD	5 (35.7) ^b
Progressive disease	0
Objective response rate (CR + PR)	9/14 (64.3)
Disease control rate (CR + PR + SD)	14/14 (100)
CR, complete response; SD, stable disease. Includes 5 patients with an unconfirmed response. Includes 2 patients with an unconfirmed response.	

Presented by: Dr. Bernard Escudier - GUCS 2018

Future: Combination of therapies

Combination Therapy: A Historical Perspective

Checkmate 214 – Ipilimumab + Nivolumab for Advanced RCC

André P. Fay, MD, PhD

andre.fay@pucrs.br

March, 1st, 2018